Max Coverage—Randomized LP Rounding

نویسنده

  • David Steurer
چکیده

This solution satisfies the cardinality constraint because exactly k of the variables x1, . . . , xm are set to 1 and the rest are set to 0. The solution also satisfies the coverage constraints for all j ∈ {1, . . . ,n}. If y j = 0, then the corresponding coverage constraint is satisfied because all xi values are nonnegative. Otherwise, if y j = 1, then u j is covered by C, which means that one of the sets Si ∈ C contains u j. Therefore, at least one of terms of the sum ∑ i : u j∈Si xi is equal to 1, which is enough to satisfy the inequality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Rounding for Routing and Covering Problems: Experiments and Improvements

Following previous theoretical work by Srinivasan (FOCS 2001) and the first author (STACS 2006) and a first experimental evaluation on random instances (ALENEX 2009), we investigate how the recently developed different approaches to generate randomized roundings satisfying disjoint cardinality constraints behave when used in two classical algorithmic problems, namely low-congestion routing in n...

متن کامل

Simpler 3/4-Approximation Algorithms for MAX SAT

We consider the recent randomized 3 4 -algorithm for MAX SAT of Poloczek and Schnitger. We give a much simpler set of probabilities for setting the variables to true or false, which achieve the same expected performance guarantee. Our algorithm suggests a conceptually simple way to get a deterministic algorithm: rather than comparing to an unknown optimal solution, we instead compare the algori...

متن کامل

Randomized Approximation of MAX-CUT

1 Last Class In the previous class we discussed averaging arguments, derandomization, the method of conditional expectation, and looked at the general technique of relaxation and randomized rounding with respect to MAX-SAT. To solve (approximate) MAX-SAT, we relaxed the requirement that the variables be boolean and instead let them take on real values in the interval 0; 1]. We then solved the r...

متن کامل

Hybrid approximation for minimum-cost target coverage in wireless sensor networks

This paper presents a hybrid approximation scheme for the Max-SNPcomplete minimum-cost target coverage problem in wireless sensor networks. LP-rounding and set-cover selection are polynomial-time approximations for this problem. Our hybrid scheme combines these two methods using a crafted convex combination. We show that the hybrid scheme with appropriately chosen coefficients produces much bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014